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SUMMARY

Steady laminar flow through pipes of straight centre line and fixed cross-sectional geometry is considered
for pipes in which the orientation of the cross-section changes slowly with distance along the axis of the pipe.
For small rates of twist, the (local) departure from (local) Poiseuille flow is small and it is shown that a part
of the mathematical problem for this secondary flow is identical to that for the small, transverse displacement
of a clamped elastic plate due to constant loading. A detailed examination of the loss of flow rate (due to
the twist) is given. The special case of a pipe of elliptical cross-section is found to be analytically tractable
(with the aid of a computer) and is considered in detail.

1. Introduction

Poiseuille flow in cylindrical pipes is well understood; see, for example, Batchelor [1]. In
the past fifty years, there have been many investigations, both theoretical and experimental,
on the effect of slowly varying changes in duct geometry. Such changes cause a loss of flow
rate, for a given applied pressure difference, and can considerably affect the critical Rey-
nold’s number for transition to turbulence. Much of the present interest in the topic can be
traced to bio-mechanical applications. In the latter, the flexibility of the bounding surface
is an important consideration. We shall content ourselves with referring the reader to
papers [2]-[8], which are recent publications in the field.

The present paper is somewhat unique in type. We consider a rigid pipe of straight cen-
tre line and fixed cross-sectional geometry, the cross-sectional geometry being the area
which is inside the pipe and which lies on a plane perpendicular to the central axis. The
twist of the pipe takes the form of a varying orientation of the cross-section with distance
along the straight central axis; see Figure 1.

Manton [9] considered a case where the area (but not the orientation) of the cross-
section of the pipe varied slowly with position along the straight central axis. Dean [10]
considered a case where the area of the cross-section was constant but the central axis
was slightly curved. The present paper presents another quite different geometrical depar-
ture from the straight, cylindrical pipe. In many real life applications, all these effects will
occur at the same time. It is hoped that the present paper will give some further under-
standing to what is a very complex topic.

Our analysis is based on a regular perturbation expansion in terms of the appropriate
small parameters. Naturally, situations in which one or more of these parameters is large
are outside the scope of the theory. We deal explicitly only with cases where the central
axis coincides with the geometric centre of the cross-sectional area. Should this paper

Journal of Engineering Math., Vol. 11 (1977) 29-48



30 L. Todd

promote further interest, then cases where the central axis (of twist) does not coincide with
the centre of the cross-section should be examined. Indeed, there is no reason why this axis
must lie inside the pipe. .

We consider a fluid of constant density and viscosity. We assume that the thermal effects
caused by the fluid motion are negligible. The effect of gravity is combined into the pressure
term, so that our pressure, p, is in fact the “modified pressure” (as explained in Batchelor

[1D.
2. The coordinate system and the full equations of motion
The coordinate system used, i.e. X, ¥, Z, is illustrated in Figure 1. We define Z = z and use
0 .
T3 = rate of change as z varies, with X and Y fixed.

The author examined the possibility of decomposing vector quantities into contravariant
components and thus of using a metric tensor. This did not prove convenient.

Let X, ¥ and k be unit vectors in the OX, OY and Oz directions, respectively. We decom-
pose the velocity vector, ¥, as

V=VeX+ W+ Vik 1)

The full Navier-Stokes equations for steady flow of a fluid of constant density p and
constant (kinematic) viscosity v are then as given below; p is the fluid pressure.

>

Boundary for’
elliptical cross-section

X

Figure 1. The coordinate systems. OX, OY are fixed relative to the cross-sectional shape of the pipe. Oxyz
are right-handed cartesian coordinates, Oz pointing directly out of the page towards the reader. 6; = 6:(z).

Journal of Engineering Math., Vol, 11 (1977) 29-48



Steady, laminar flow through twisted pipes
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32 L. Todd
3. Steady laminar flow in pipes of zero twist

Such pipes are cylindrical and the flow is unidirectional, being known as Poiseuille flow.
In fact,

V= VoX, Yk =V, (say) 6
and

= — Pz + constant = p, (say), (7)
where P is a constant (applied pressure gradient) and
oWV, = —P. )

We will take P to be positive. This places no real restriction. ¥, is determined uniquely by
(8) and the boundary condition;

Vo, = 0 at the (inside) pipe walls. &)
We define

U, = V5(0, 0), (10)
assuming that U, represents a typical value of V5, |

We define

L = typical length scale of the cross-section, (11)
and

R = (UzL) = Reynolds number of the flow. (12)
Obviously,

U,y ~ (PL?*/pv). 13)

We define the flow rate

0= J‘ J Vo(X,Y)dA = pv4 (non-dimensional function* of (X/L), (Y/L)). (14)
sectton
Obviously,
Q ~ (PL*/pv), (15)

and for any given pipe shape, P is determined from Q (or vice-versa). Similarly, U,, R and
¥V, are determined if Q is specified.

* This function is determined solely by the shape of the cross-section.
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Steady, laminar flow through twisted pipes 33
4. Steady flow in pipes of small twist

We now consider pipes of small twist, i.e. appreciable changes in 8, = 0,(z) (and its first
few derivatives), take place over many pipe diameters. We are interested in laminar flow
in such pipes when a constant pressure difference is applied between the ends of the pipe.

It is permissible to argue that the local flow (far from the ends) is basically the Poiseuille
flow appropriate to a fixed flow rate, Q, provided

(i) IRLOJ. <1 (16)
and
() IZOl <1, 1601 3 (612 an

0, 0, are, respectively, the first and second derivatives of 6, (with respect to z of course)
and the terminology of Section 3 is used. It is assumed that

d

=~ 6. (or smaller). (18)
Let

V=V, + VX + V4 ¥ + T,k (19)
and

p=po+0i(X,Y, Z), (20)

where is it assumed that

ov, < Vy oVy (typically) ’l
< 1ca
oz ax | T [ar|) P @)
and
[V.l, [Vxl, |V4| are everywhere much smaller than U,. (22)

The inertia terms in the X and ¥ components of the equation of motion are negligible, as
are all the terms on the right-hand sides except the first. We therefore deduce that to a
first approximation

Op ’

——aXl = PVV§',YVX (23)
and

op

——6; = pVV§,YVY' (24)

Similarly, the equation of continuity reduces to

Wy OV Vo _ LW
oY ax /)’

XXy

0X oY

25)
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34 ‘ L. Todd

We have shown that, to a first approximation, Vy and Vy are obtained by solving the (es-
sentially) two-dimensional problem set out by equations (23), (24) and (25) together with
the boundary conditions:

V, = 0 = V, at the (inside) wall. (26)

We now proceed to reformulate this two-dimensional problem in a way which is preferable.
Let P, Vy denote the first approximation to Vy, Vy, respectively, as obtained from the so-
lutions of (23) to (26).

Let Z be a unit vector along a curve on which X, Y is fixed and z varies; this unit vector
pointing in the direction of increasing z. A fluid particle with velocity = (scalar function)
Z, would not change its position relative to the cross-section of the pipe. A careful exam-
ination reveals that it is the velocity difference

V- {V/Z-k)Z

which will cause migration of a fluid particle relative to the pipe cross-section. Now

Z = (k- 0.YX + 6.XD)/[1 + (B)X(X? + YHI% )
Thus the migration is governed, to a first approximation, by the velocity

(Vx + 0,YV)X + (Fy — 6. XT)Y. (28)
We define

Vi = Vx + 6,YV, (29)
and

Vy = Vy — 0.XV,. (30)

(23)-(26) require that

op OV, ,

axl = pWWi y Vs — 2pv0, —0}9- + 0.YP, 31)

op, Vv,

— = pWi Wy + 2pv8, - 0.XP, 32

Y% Wy yVy + PVzaX f (32)

vy vy

) =0, 33

ox oy (33)
and the boundary conditions

Vy = V¢ = 0 at the (inside) wall of the pipe. (34

Equation (8) was used in the derivation of (31) and (32).
We introduce the stream function ¥*, where
oP* ovP*

b= S Vy = — 35
Vx oy ° T X (33)

and ¥*

0 on the boundary.
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Steady, laminar flow through twisted pipes 35

We eliminate p, between (31) and (32) and use (8) and (35) to obtain

pWi yP* = —40.P, (36)
where we require
op*
pra 0 = P* at the boundary. 37
n

d/0n is the (partial) derivative in the direction of the inward normal to the boundary.

Equations (36) and (37) are those governing the small, transverse displacement of a
clamped, elastic plate of the shape of our pipe cross-section; see, for example, Love [11].
Thus all the results of this part of classical elasticity theory have an interpretation in fluid
mechanics. We should also note that (35), (36) and (37) have another analogy in plane,
Stokes flow. They represent such a flow, in a region identical to the cross-section of the
pipe, activated by a uniform distribution of vorticity sources. The problem can be reformu-
lated in a number of ways by noting that the general solution of (36) is

P* = —0(X* + Y?*)V, + (any biharmonic function),

where V, is any solution of equation (8).

As the reader will be aware, simple closed-form solutions of (36) and (37) are not over-
abundant and recourse must often be made to numerical procedures. In Section 5, we dis-
cuss in detail the special case of an elliptic cross-section. Arguments similar to those given
in Section 5 can be made in the general case and lead to the following conclusions.

(i) V¢ and Vy (as well as Vy, V) are O((0.L)U,).

(i) ¥,is O((RO.LYU, (6.L)*U,) provided that J(V,,¥*/X,Y) # 0. Therelative increasein
applied pressure gradient (over that for the Poiseuille flow) needed to maintain the flow
rate Q is O((RO.L), (0.L)%).

(iii) If J(V,,P*/X,Y) = 0 (as happens in the case of the elliptical cross-section) then ¥,
is O((RO;L)*U,, (0,L)*U,), and the required relative increase in the applied pressure gra-
dient is O((RO.L)?, (6.L)%).

In fact, physical considerations would lead us to believe that in the general case,

J
X, Y
0£({=

Wyl 17|

< 1. (38)

This is because the contours of ¥, are not identical to, but are very similar to those for ¥*.
It is therefore probably useful to obtain (in the general case) the (RO.L)? contribution to
(V,/U,) and to the pressure gradient, as well as the (R9.L) contribution. This can be done
in very much the same way as the (R.L)* contribution is obtained in Section 5 for the
elliptical case.

The result (38) was shown to hold in the case of a square cross-section. Although there
is no closed-form analytic solution for a square cross-section, the numerical solution was
available to sufficient accuracy for the present purposes; we mention here the work of
Wojtaszak [13] and Timoshenko and Woinowsky-Krieger {12]. An analytic solution was
available for ¥, and this presented no computational problems. We found that { was at
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36 L. Todd

most, about .046, a typical value being about .010. This strengthens the point made in the
proceeding paragraph.
(iv) The results (i), (ii) and (iii) show that [8V,/Z] is typically

oo 2]+ 22)

oX
and thus the results are consistent with the assumption (21). We note that |¥,| can be much
larger than |Vy| and |V if R > 1.

3y
oY

5. Steady flow in a cylindrical pipe of elliptic cross-section in the presence of small twist

We choose OX, OY to coincide with the major, minor axes of the ellipse, respectively, as
shown in Figure 1. The (inner) boundary of the pipe is given by
X2 Yy?

+

where a, b are positive constants; @ > b and b is not much smaller than a.
In this case,

Vo = P (2 + Ly™ 1 X _r =Uy(1 £ r (40)
® T opw\a® B @ ) ° a@ )
dpv (a* + b?)
P=_n-'——aabT—Q, L=a (41)
and
2 P [1 1\™!
Uy=—Q0=—\—5+-]} - 42
°" nab Q 2pv <a2 bz) “42)
For convenience, we define
n=(bla), %= (X/a)and ¥ = (Y/b). 43)
For this special case, equations (23) to (26) give
Vx = (1 = n)(0.a)¥ Vouo, (44
and
Vy.= (1~ n)O@Z Votso, (45)

where a4, %y, are constants given by
(1 +n( + 3% (1 +31%)
a = =
I o v N )

Table 1 lists the values of these two constants for various values of #. We see from these
results that

[Vgl ~ Vx| ~ (1 = mI0al Uy < Uy

*30- (46)
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38 L. Todd

which is consistent with our prior assumption, (22).

Let
Pr=—-1- n)Pa(HLa)%”@oczp, ) 47
where
oy = {n(L + n)(1 + 30*)(n® + 3NHA + 1)G + 27° + 3n%)}. (48)

Values of «;, are given in Table 1. The solution of (23) to (26) reveals that
py = f(Z) + P, + (contributions from neglected terms), (49)

where f(Z) is any function of Z. In fact, f(Z) will be determined from the problem for V,.
We now turn to the alternative formulation as given by (35), (36) and (37). The solution
of these in the present special case is

_Pa3 ’74 XZ YZ 2
i+ 0 -
2o "G ( P )
20v(0a) (L +7°)° 2

il

= . 50
Pa  (B+27*+3% ° (50)
Clearly, ¥* is a function of V;, and so
P*, Vo
J <7 )= 0. (51

Of course, equations (44) and (45) together with (35), (29) and (30) can be shown to give
the result (50). '

(i) Migration of fluid particles across the pipe
In cartesian coordinates, the particle paths (i.e. stream lines) are given by
dx dy dz )
B VO + 17z: ’

v,

y
where ¥V = V,i + V,j + V,k.
We change this into our (X, ¥, z) reference system and obtain
dX dy B dz
Ve + YOV + V) Ve—X6Vo+ V) (Vo + 7))

(52)

We use (22), (29), (30) and the fact that to a first approximation Vy =~ P, Vy = ¥, to
deduce that, to a first approximation, the sireamlines satisfy

ax dy dz

& 53
Vy 124 Vs (53)

Eq. (53) immediately yields the result (50), i.e. fluid particles move along Surfaces which
are geometrically similar to the boundary shape (and which are the equipotentials for
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Steady, laminar flow through twisted pipes 39

Vo(X, Y)). It is of interest to find out how a fluid element changes position relative to the
local cross-section of the pipe. Consider a particle which flows along
b*X? + a’Y? =a?, (2 < a’b?). (54)

We introduce the eccentric angle y by

X = (a/b)cosy; Y = (a/a)siny. (55)
It can be deduced from (53) that for a fluid particle
dy '
y = —a,f, + (constant) < i —a,, (56)
'z
where
(1l + »*
n(l + %) 57

fy = .
G+ 27* + 3%

Values of a are given in Table 1.

For a circular pipe, # = 1. In this case, equation (57) gives a, = 1, ie. y = —0, +
+ (constant). This indicates that the fluid element is staying fixed relative to the cartesian
axes Oxy, a result which is obviously correct (for a circular pipe, V, = 0=V, = 7).

For the other cases 0 < 5 < 1 and equation (57) shows that 0 < o, < 1. From this fact
and equation (56), we deduce that fluid particles migrate relative to the (local) cross-section,
along an elliptical curve geometrically similar to that of the boundary shape and in the di-
rection opposite to the local twisting of the pipe. In real terms, the fluid particle migrates
in the direction of local twist but always lags behind (except where 6, = 0).

(ii) The problem for V,

Equation (5), together with appropriate boundary conditions will determine V.. We start
by assuming that '}, ¥, will be important in the determination of ¥,. If we then omit from
equation (5) those terms which are definitely negligible (whatever the result for V), we
obtain

1 vy 1 vV, 1 (Y v, 6V0)

Vgt = Ve — VY 2 - x 2
y Xox Ty vy TN\ ax oY

1 op, op4 opy
+ —0Y— -0 X — + —
oV ( 0X oYy 0Z

+ X -Y -X

0%V, 0%V, oV oV
— V}Zr,yvz + (0;)2 {Yz 7o 2 0 0 0}

0X? oY? oY 174
v, v,
+ <Y ——-X . 58
i { X oY } : ©8)

Now the last two terms on the R.H.S. of (58) are of order (6°)>Uy(1 — #).

The last term on the left hand side of (58) is O((1 — pUB)* + (1/pv) [f(D)). |f'(2)]
will be of order consistent with the rest of the terms in the equation, i.e. we can ignore it
during the present discussion of order of magnitude.
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At first sight, it would seem that replacing Vy, Vy in (58) by Vy, ¥, would give a first
approximation to the sum of the first three terms on the L.H.S. and that this would be of
order (1 — 7)RO.Uqa™t. But

W, o 0V, Y, v, WV, aVy
Ve — 4+ Vi —— 4+ 0V Y — — X —— | =V — + Vy —
Yox T Ty °< 0X Y xox tW ay)
Vo, P*
=J =0, (59)
X, Y

as is shown by equation (51). This seemingly convenient cancellation does, in fact, con-
siderably complicate the analysis. If the Jacobian of equation (59) kad been of the same
order of magnitude as the separate terms, we would have deduced that

{7/ = )Uo} was O{R(6:a), (00)*}. (60)

The above cancellation reduces the R(6.a) to something smaller. We must calculate that
part of this smaller quantity which, in magnitude, could be bigger than, or comparable
with, (0.a)>.
A closer examination of the full problem enables us to deduce that
Vy = Vell + O(R(ab)), (a0)))} + O((ad) 7)),

61
Vy = V{1 + O(R(aby), (a8,)*)} + O((ab)V). e

The term involving R(af.) will generate a contribution of order (I — 7)Uy(Raf.)? to V,
and to (pv)~'f’(Z). This contribution may be significant or even dominant. The other
terms in (61) yield contributions which are relatively insignificant. Thus, in order to ob-
tain ¥, and f'(Z) to a first approximation, valid for all possible values of R, we must ob-
tain the terms in R(af;) as set out in equation (61).

Let ﬁx and ﬁy be the desired corrections to Py and V. (This means ng and ﬁy are of

order VxR(a#)). The problem for ng and Igy reduces to the following
ov,  oF,

2 =0, 62
X oY ©2)
1. oV 1, dVy 1 _ oF; 1 oVy oVx -
l il /AL ST /At SN (A0S 6 —x—X_7
y X ax T M ey ° oz O ax oy 7V
1 2 N s A
+ ‘[; “ay(h - P)=ViyVe : (63)
1., 6 . 1,0 1 _ oV 1 oVy oy -
—Vy— —V —0VydY — - X V
v Yox T s ° oz ‘°{ X ay ¥
1 0 R ~
+ “p—v‘ Ef(pl — Py = VJZI,YVY' (64)
The boundary conditions are, of course,
~ ~ X\ Y\?
Vx=0=Vyon5€2+@2=l=(*)+(F). (65)
a
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Steady, laminar flow through twisted pipes 41

The solution to the above (essentially) two-dimensional problem is of the form
¥, = {Polynomial in (%, #)}R(O.a)*( — U,
+ {Polynomial in (%, #)}R0"a*(1 — n)U, (66)
with Iz/y given by a similar expression. We also deduce that
py — Py = f(Z) + &*{Polynomial in (%, ¥)}R(0.a)*(1 — )Pa
+ Z%{Polynomial in (Z, ¥)}R0.a*(1 — n)Pa
+ smaller contributions due to neglected terms. (67)
The coefficients* in the polynomials are complicated rational functions of #; bounded over
the range of interest 0 < 7 < 1. f(Z) is an unknown function of z = Z which will be de-
termined from the problem for ¥,. Equation (67) is consistent with the earlier equation (49).
f(Z) differs from f(Z) in that it includes a term of order R*(af.)Pa(l — ) which was pre-
viously among the neglected terms.
We are now ready to solve for ¥, and f(Z). Now the second and third term (as well as

the last term) on the R.H.S. of (67) do not provide significant contributions to ¥, and f(Z)
and thus we solve

1 ~ 0V, 1 ~ 0V, 1 op op op 1 df
LI AUCILS - SCN v el R I W
X v T ay ' pv o0X oY = oZ ov dZ
- o2V, 82V, v, v,
=V P +@)2y -2 4x2- 2 y 0 _x 0
xrVe + (6 x> 0Y? oY 0X
+01Y o X Vs 68
’ 0X oy |’ (68)
The boundary conditions are
V,=0 on a’X? + b*Y? = a®h? (69)

and

” V,d4 =0, (70)
A

where A4 is any cross-section of the pipe, i.e. 4 is the area
z = constant; 52X? + a*Y? < a*b>.

The boundary condition (70) comes from the fact that

(Vo + V.)d4 = Q = flow rate,
JJAaA
and that by definition

P

VodA = Q.

vJ4d

* These coefficients were calculated numerically for various values of # but they are not presented here as,
in themselves, they are not of primary interest.
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The solution set is once again explicitly obtained, as it basically involves only polynomials
in Z and #%. The solution set is

Vo = (1 = ))Vo{(0:0)* (2202 + 002%% + t0) + 07@°F Y (21, — n(1 +)(1 + 1) 72}
+ (1 = PU(RO.G) {ego + ero(Z? — 1*H?) + e40X* + e, X°H* + eg, W™
+ ego®® + e, XU + e, XU + €W + egoX®
+ e X H? + ey XU + 0,6 X2 HC + eqs¥® + 0% °
+ e, X3 + e, XU + efg X UC + 025X Y® + €0 W'}
+ (1 = NURYO@ N e ZY + e, T°Y + e13ZY° + 5, 2°Y
+ e T3H? + e AU + e XY + e53 XY + 035 X°Y 5
+ 7 %Y" + e XU + ez XY + 55 XY + 3777

+ e X W%}
+ (1 — nV,(RO.@)’es, n
and
d—f=—P(1—1){ - gy 'a)?
1z AL — m)ay,(0:0)° + a3 ,(ROa)°} (72)

where the coefficients «,,, etc. are rational functions of #. The coefficients are much too
complicated for it to be a worthwhile exercise obtaining the algebraic formula for each of
them. Instead, the author used a computer to derive them numerically for various values of
#. Even this involved considerable work, viz.

(i) The coefficients involved in Iz/’X and I7Y (as per equation (66)) were found numerically
(for various values of 1) by solving a set of seven simultaneous linear equations in seven
unknowns and a similar set of eight equations in eight unknowns.

(ii) Based on the results of (i) above, it was then possible to obtain numerically (for the
same set of values of 1), the coefficients involved in (71) and (72). This required solving a
set of twenty simultaneous linear equations in twenty unknowns, a similar set of fifteen
equations in fifteen unknowns, and finally calculating the coefficients of dfldZ which can
be expressed in terms of the other coefficients using the boundary condition (70). The
coefficients o, ,, @, ,, @20, %92, %o and oy, are given in Table 1. The coefficients eq, €20, - -,
e,s and ey, are given in Table 3. The coefficients e, €34, ..., €37 and e; 4 are given in Table 2,

Equations (7), (20), (67) and (72) allow us to deduce that

b7
—*’; = —P{1 + (1 — )2, (0a)* + (1 = g, ZH(0'a%) + (1 — )5, (RO,0)*}

+ (terms of smaller order). (73)

Equation (73) indicates the increase in pressure gradient required in order to maintain the
same flow rate as for Poiseuille flow, i.e. the non-twisted case. The pressure gradient for
Poiseuille flow is, of course, — P.
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The coefficient a3, was found to be zero for all values of 1. More precisely, we worked in
double precision to the limit of accuracy of the computer. In so doing, we obtained results
for a3, of order 10717, 1078 (see Table 1). This can (could) be accounted for by unavoid-
able round-off error. Considerable cross-checking and care went into the calculation of «;,
this work spanning a period of 12 months. The result for a3, is of considerable importance
because it means that the first (bracketed) term on the R.H.S. of equation (73) does not give
a valid first approximation, for all values of R, to the required increase in pressure gradient
due to the twist. A careful reexamination of the full problem revealed that with a3, = 0,

dp

5 = P+ d=m) 2a, (0.0 + (1 — 1)y, ZY(0%0°)

+ (1 — #) (a term of order (Rf.a)*)} + terms of smaller order. (74)

However, the work involved in an explicit derivation of (74) would be prohibitive (and is
hereby bequeathed to someone else). In any case, as was pointed out in Section 4, for
shapes other than the ellipse, one can expect a (non-zero) contribution of order (Rf.a) to
the bracketed term in (74).

We finish by pointing out that equation (71) does give a first approximation to V, for all
possible values of R, (0.a) and 0”a*. In Figures 2, 3 and 4, we give some details of ¥, for
various possible cases. These were obtained by computer calculations. We point out that
for R > 1, |7,| may be typically large compared to |Vy| and |Vy].

Calculations were also made for R < 1, 0, = constant and 5 = 0.05(.05).95. These re-
vealed that the corresponding 8V, is negative everywhere for 5 less than about .45 and that

(Y/a)

R=ow
Contours of
— 10° (8V,/Uy(R63a)%)

4 6 I ™~
T
3~ - 19 . 2 \

-Negﬁ ) e ™ RN

. 12 \
1 : Positive A
/- / R W
-1 2 -3 4 -5 -6 -7 -8 9 1-0
Figure 2. The relative change in axial velocity, V-%, due to a constant twist (i.e. 6; = constant) when
R = oo, = .5 (07 is the excess of V; over that which would be occasioned in the no-twist case by the

same pressure gradient, i.e. p/oz = —P{1 + (1 — 7)?a,5(0.a)?}. Here, V- is taken to be Uy + Ql;z-) The
results for n = .5, (R/150)? > 1 are similar.

> (X]a)

0
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(Y/a)
R =150
Contours of
10 (6V,/Uy(0%2)%)
ST
465 ~- 13
3 e :
.ZJN’CS- ' - T
1l SO 105, i
N Positive \ --g;:q\_
0 12345678910
(Y/a)
R =100
Contours of
10 (6V,/Us(830)%)

* (X]a)

(Y/a)T R=170
Contours of
10 (8V,/Uy(630)%)

(Y/a)¢
R =50
Contours of
51 10 (8V,,/Uy(81a))
L2 e,
-3
2
L—"
o 2 4 6 8 10
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Figure 3. The relative change in axial

velocity, V- ﬁ, due to a constant twist

] when 7 = .5 (see caption for figure 2).
(Xla) @ R =150, (b) R=100, (©) R = 70,

(d) R = 50.
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Ve .
(Fla)y (R]50)% < 1
Contours of
) S— 10 (37,/Ug(030)?)
Pos. .- T —

/ /
1 -/ / -1 71
) / Negative \ \\
0 1 2 3 4 5 6 T 5 Lo e

Figure 4. The relative change in axial velocity, V- Il;, due to a constant twist when R <€ 1, 5 = .5. The
results for # = .5, (R/50)*> < 1 are similar (see caption for figure 2).

as 7 18 increased from .5, the area of positive 6V, (see top left-hand corner of Figure 4) in-
creases in size until at # = .95, it occupies a sizable part of the cross-section. Calculations
were made for R » 1, 0; = constant, and n = 0.05(.05).95. These were all qualitatively
the same as that illustrated in Figure 2 (the case = .5). Computations were carried out
for a special case of varying twist,

0, = gsin(kz) B

at z = 0, n/(4k), ©/(2k), etc. In this case, the profiles of 8V, are asymmetric. The complex
nature of the results made it clear that the reader who wishes specific detail for any given
0(z) should construct the corresponding V, for himself, using equation (71) and Tables 1,
2 and 3.

6. Conclusions

The case of a (twisted) pipe of elliptical cross-section, though analytically tractable with the
aid of a computer, is not completely representative of the general case. Also, most other
special cases will require numerical solution of the governing partial differential equations
and boundary conditions. For further conclusions, the reader is referred back to the com-
ments in Section 4 (beginning with the first new paragraph after equation (37)).

It is a pleasure to record my gratitude to the National Research Council of Canada
whose grant to me was of great benefit to the pursuit of my research. Mr. D. Wright was a
very efficient programming assistant.
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