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SUMMARY 
Steady laminar flow through pipes of straight centre line and fixed cross-sectional geometry is considered 
for pipes in which the orientation of the cross-section changes slowly with distance along the axis of the pipe. 
For small rates of twist, the (local) departure from (local) Poiseuille flow is small and it is shown that a part 
of the mathematical problem for this secondary flow is identical to that for the small, transverse displacement 
of a clamped elastic plate due to constant loading. A detailed examination of the loss of flow rate (due to 
the twist) is given. The special case of a pipe of elliptical cross-section is found to be analytically tractable 
(with the aid of a computer) and is considered in detail. 

1. Introduction 

Poiseuille flow in cylindrical pipes is well understood; see, for example, Batchelor [1]. In 
the past fifty years, there have been many investigations, both theoretical and experimental, 
on the effect of slowly varying changes in duct geometry. Such changes cause a loss of  flow 
rate, for a given applied pressure difference, and can considerably affect the critical Rey- 
nold's number for transition to turbulence. Much of the present interest in the topic can be 
traced to bio-mechanical applications. In the latter, the flexibility of the bounding surface 
is an important consideration. We shall content ourselves with referring the reader to 
papers [2]-[8], which are recent publications in the field. 

The present paper is somewhat unique in type. We consider a rigid pipe of straight cen- 
tre line and fixed cross-sectional geometry, the cross-sectional geometry being the area 
which is inside the pipe and which lies on a plane perpendicular to the central axis. The 

twist of the pipe takes the form of a varying orientation of the cross-section with distance 
along the straight central axis; see Figure 1. 

Manton [9] considered a case where the area (but not the orientation) of the cross- 
section of the pipe varied slowly with position along the straight central axis. Dean [10] 
considered a case where the area of the cross-section was constant but the central axis 
was slightly curved. The present paper presents another quite different geometrical depar- 
ture from the straight, cylindrical pipe. In many real life applications, all these effects will 
occur at the same time. It is hoped that the present paper will give some further under- 
standing to what is a very complex topic. 

Our analysis is based on a regular perturbation expansion in terms of the appropriate 
small parameters. Naturally, situations in which one or more of  these parameters is large 
are outside the scope of the theory. We deal explicitly only with cases where the central 
axis coincides with the geometric centre of the cross-sectional area. Should this paper 
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30 L. Todd 

promote further interest, then cases where the central axis (of twist) does not coincide with 
the centre of the cross-section should be examined. Indeed, there is no reason why this axis 
must lie inside the pipe. 

We consider a fluid of constant density and viscosity. We assume that the thermal effects 
caused by the fluid motion are negligible. The effect of gravity is combined into the pressure 
term, so that our pressure, p, is in fact the "modified pressure" (as explained in Batchelor 

[11). 

2. The coordinate system and the full equations of motion 

The coordinate system used, i.e. X, Y, Z, is illustrated in Figure 1. We define Z = z and use 

0 

8Z 
= rate of change as z varies, with X and Yfixed. 

The author examined the possibility of decomposing vector quantities into contravariant 
components and thus of using a metric tensor. This did not prove convenient. 

Let X, Y and/~ be unit vectors in the OX, OY and Oz directions, respectively. We decom- 
pose the velocity vector, F, as 

v= Vx2 + vrs + v,~. (1) 

The full Navier-Stokes equations for steady flow of a fluid of constant density p and 
constant (kinematic) viscosity v are then as given below; p is the fluid pressure. 

Y 

Y 

Boundary for 
elliptical cross-section 

X 

Figure 1. The coordinate systems. OX, OY are fixed relative to the cross-sectional shape of the pipe. Oxyz 
are right-handed cartesian coordinates, Oz pointing directly out of the page towards the reader. Or =- Or(z). 
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Continuity: 

aVx aV~ aV~ ( aV~ a~ -+  ~ - +  ~-+0'~ r ax 

.~ component of equation of motion: 

T ~ T U + - ~ T k  - 

- - - x  av~'] = ~ - j  o, 

1 8V x 
+ - v~ + 1-o;v~ 

v - ~ -  v 

aVx aVx } 1 ~p 
x Y a - x - - X  a- - f - -v~  + pv ax  

aZVx 
= v~,y, zvx - o;v~ + 20; Y axaz 

+ (0;)2 {y2 a2Vx x2 aWx 
QX 2 + Bye-F- - 2XY 

a vx a v~ 
- x - - -  Vx+ 2X 

aX 8Y 

f component of" equation of motion: 

1 OV r 1 OVy 1 ~V r 1 , 
v V x - g x - + - v ~ T f - + - v ~  + - o , v ~  V ~ ~ V 

{ ~ VY x ~ V Y } l . ~p 
x Y 8X 8-~ +Vx + pv 8Y 

V2 r zVr + O"Vx + 20~ {Y ~2Vr 82Vr 
= x, , 8XSZ X 8YSZ 

_.~ (0',)2 {y2 a2Vy X 2 a2Vy 
8X ~ + 8y~  - 2XY 

av, aVx 
- X - - - V y +  2 Y - - -  

OX OX 

/} component of equation of motion: 

8 V z l O V ~ I O V ~ I ( S V ~  
1 V x ~ - + - -  + - - V ~  + O'V= Y 

T ,, v ~ T f -  v 7 2 -  ax  

1 (O;yOp O,X@ 812) 
+ p~ a x  ~ f  + ~ Z  

V2 { 8~V~ 
= x,r, zV~+20'~ Y 8XaZ 

+ (0,02 {y2 a2V~ a2V~ 
~ X  2 -~ X 2 t~y2 

a2Vx aVy } 
X 8YSZ OZ 

a2Vx y 8Vx 
8XOY 8Y 

- 2 Y S x j  +O~ Y 8X - - - X  

+ a z 3  

82Vy y 8Vr 
8XgY 8Y 

2 x  a t 3  + ~ Y ax 

8Y ' 

- - - X  8Y ' 

_ _ _ x  

x a r a z ] +  ~ ~ - - X a r ]  

a2vz Y av~ _ x avz 
- -  - 2XY 8X8~ a--Y- 8X J" 

(2) 

(3) 

(4) 

(5) 
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3. Steady laminar flow in pipes of zero twist 

Such pipes are cylindrical and the flow is unidirectional, being known as Poiseuille flow. 
In fact, 

V -~ Vo(X, Y )  f~ - Vo (say) (6) 

and 

p ~ - P z  + constant = Po (say), (7) 

where P is a constant (applied pressure gradient) and 

p v V 2 V o  = - P .  (8) 

We will take P to be positive. This places no real restriction. Vo is determined uniquely by 
(8) and the boundary condition; 

Vo = 0 at the (inside) pipe walls. (9) 

We define 

Uo ~ Vo(O, o), (lo) 

assuming that Uo represents a typical value of Vo. 
We define 

and 

L --- typical length scale of the cross-section, (11) 

/ U . L \  
R ~ ~ - 2 ~ - ) =  Reynolds number of the flow. (12) 

Obviously, 

U o ... (pL2/pv). (13) 

We define the flow rate 

f f  pt4 Q ~ Vo(X, Y)dA  =- - ~  (non-dimensional function* of (X/L), (Y/L)). (14) 

c ross"  
s e c t i o n  

Obviously, 

Q N (pL4/pv), (I5) 

and for any given pipe shape, P is determined from Q (or vice-versa). Similarly, Uo, R and 
Vo are determined if Q is specified. 

* This function is determined solely by the shape of the cross-section. 
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Steady, laminar flow through twisted pipes 33 

4. Steady flow in pipes of small twist 

We now consider pipes of small twist, i.e. appreciable changes in 0, = Odz ) (and its first 
few derivatives), take place over many pipe diameters. We are interested in laminar flow 
in such pipes when a constant pressure difference is applied between the ends of the pipe. 

It is permissib!e to argue that the local flow (far from the ends) is basically the Poiseuille 
flow appropriate to a fixed flow rate, Q, provided 

(i) IRL01'~ ~ 1 (16) 

and 

(ii) ILO'~I ~ 1, I0~'1 ~k IO'~12. (17) 

0'~, 0'~ are, respectively, the first and second derivatives of 0~ (with respect to z of course) 
and the terminology of Section 3 is used. It is assumed that 

0 
---~- ,-~ 0'~ (or smaller). (18) 

v -  Vo + (vx2 + v~f + 9~k) 

Let 

and 

P - Po + Pl(X, Y, Z), 

where is it assumed that 

09~ (t ~Vx OVy ~ (typically) 
- ~  ~ \l-g 2 -  + ~r  / 

and 

(19) 

(20) 

(21) 

avx ov,:0,(xavo yaVo) 
~ + ~  "\ a r -  - ~ - /  

Similarly, the equation of  continuity reduces to 

OPl = pvV~ rVr. (24) 

(25) 
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and 

= pvV~ rVx (23) OX 

19=1, Igxl, Ig~l are everywhere much smaller than U o. (22) 

The inertia terms in the X and Y components of the equation of motion are negligible, as 
are all the terms on the right-hand sides except the first. We therefore deduce that to a 
first approximation 
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We have shown that, to a first approximation, Vx and Vr are obtained by solving the (es- 
sentially) two-dimensional problem set out by equations (23), (24) and (25) together with 
the boundary conditions: 

Vx = 0 = Vr at the (inside) wall. (26) 

We now proceed to reformulate this two-dimensional problem in a way which is preferable. 
Let fix, Vr denote the first approximation to Vx, Vr, respectively, as obtained from the so- 
lutions of (23) to (26). 

Let 2 be a unit vector along a curve on which X, Yis fixed and z varies; this unit vector 
pointing in the direction of increasing z. A fluid particle with velocity = (scalar function) 
2 ,  would not change its position relative to the cross-section of the pipe. A careful exam- 
ination reveals that it is the velocity difference 

v -  {vz/ (~ . t ; )}2  

which will cause migration of a fluid particle relative to the pipe cross-section. Now 

2 =-- (k - O~Y2 + O',Xf)/[1 + (0',)2(X 2 + y2)]~. (27) 

Thus the migration is governed, to a first approximation, by the velocity 

(Vx + O;rVo)X + (V~ - O;XVo)f. (28) 

We define 

V* = V'x + O'YVo (29) 

and 

v *  = r - o;XVo. (30) 

(23)-(26) require that 

@i , c~Vo 
~ 2  - pvV~,~v~ - 2pvo~-g-f- + 0"re, 

, OVo 
@ t 2 * 2prO, - ~ -  O'~X P , OY - pvVx, rV~ + 

ovt 
- - - +  - - - - 0 ,  
CX OY 

and the boundary conditions 

V~ = V* = 0 at the (inside) wall of the pipe. 

Equation (8) was used in the derivation of (31) and (32). 
We introduce the stream function ~*, where 

0~* 0~* 
v*= re= 

3Y ' OX 

and 7 s* = 0 on the boundary. 

(31) 

(32) 

(33) 

(34) 

(35) 
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We eliminate Pl between (31) and (32) and use (8) and (35) to obtain 

orgy, y7 ~* = -40',P, (36) 

where we require 

0kg* 
- 0 = 7 s* at the boundary. (37) 

0n 

O/On is the (partial) derivative in the direction of the inward normal to the boundary. 
Equations (36) and (37) are those governing the small, transverse displacement of a 

clamped, elastic plate of the shape of our pipe cross-section; see, for example, Love [11]. 
Thus all the results of this part of classical elasticity theory have an interpretation in fluid 
mechanics. We should also note that (35), (36) and (37) have another analogy in plane, 
Stokes flow. They represent such a flow, in a region identical to the cross-section of the 
pipe, activated by a uniform distribution of vorticity sources. The problem can be reformu- 
lated in a number of ways by noting that the general solution of (36) is 

7 j* = -O',(X 2 + YZ)v o + (any biharmonic function), 

where Vo is any solution of equation (8). 
As the reader will be aware, simple closed-form solutions of (36) and (37) are not over- 

abundant and recourse must often be made to numerical procedures. In Section 5, we dis- 
cuss in detail the special case of an elliptic cross-section. Arguments similar to those given 
in Section 5 can be made in the general case and lead to the following conclusions. 

(i) Vx and Vy (as well as V*, V*) are O((O~L)Uo). 
(ii) V~ is O((RO'~L)Uo, (O'~L) z Uo) provided that J(Vo,~* /X, Y) ~ O. The relative increase in 

applied pressure gradient (over that for the Poiseuille flow) needed to maintain the flow 
rate Q is O((RO',L), (0~L)2). 

(iii) If  J(Vo,TJ*/X, Y) - 0 (as happens in the case of the elliptical cross-section) then Vz 
t 2 r 2 is O((RO~L) Uo, (O,L) Uo), and the required relative increase in the applied pressure gra- 

dient is O((RO'~L) a, (O'~L)Z). 
In fact, physical considerations would lead us to believe that in the general case, 

0 ~ ( - - -  \ X , Y / [  ~ 1. (38) 
II vVoll II V~U*ll 

This is because the contours of V o are not identical to, but are very similar to those for 7 t*. 
It is therefore probably useful to obtain (in the general case) the (ROLL) z contribution to" 
(gz/Uo) and to the pressure gradient, as well as the (RO'~) contribution. This can be done 
in very much the same way as the (R0~L) 2 contribution is obtained in Section 5 for the 
elliptical case. 

The result (38) was shown to hold in the case of a square cross-section. Although there 
is no closed-form analytic solution for a square cross-section, the numerical solution was 
available to sufficient accuracy for the present purposes; we mention here the work of 
Wojtaszak [13] and Timoshenko and Woinowsky-Krieger [12]. An analytic solution was 
available for Vo and this presented no computational problems. We found that ~ was at 
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36 L. Todd 

most, about .046, a typical value being about .010. This strengthens the point made in the 
proceeding paragraph. 

(iv) The results (i), (ii) and (iii) show that la~/~Zl is typically 

and thus the results are consistent with the assumption (21). We note that I vzl can be much 
larger than Irxl and Irrl i f R  ~> 1. 

5. Steady flow in a cylindrical pipe of elliptic cross-section in the presence of small twist 

We choose O X ,  O Y  to coincide with the major, minor axes of the ellipse, respectively, as 
shown in Figure 1. The (inner) boundary of the pipe is given by 

X 2 y2  
a--- T- + ~ = 1, (39) 

where a, b are positive constants; a > b and b is not much smaller than a. 
In this case, 

and 

2-~-v ( 1 bl--/-)- 1 ( X2 110 = ~ -  + 1 a2 

4pv (a 2 + b 2) 
P =  Q, L = a  

7z a3b 3 

Uo = ~-~ab a = -a~- + -~- . 

For convenience, we define 

~l = (b/a), 3s = (X/a)  and ~ = (Y/b). 

For this special case, equations (23) to (26) give 

Vx = (1 - ~l)(O~a)~Vo% I 

and 

Y~) ( X2 
b 2  = U o 1 a2 ~ ) ,  (40) 

(41) 

(42) 

(43) 

(44) 

~ = (1 - n ) ( O ' ~ a ) ~ V o ~ l o ,  (45) 

where ~1o, Cr are constants given by 

(1 + ~/)(1 + 3rfl) (1 + 3n 2) 
%1 = 17 (3 + 2r/z + 3~/4) - ~/ (3 + ~/2) cqo" (46) 

Table 1 lists the values of these two constants for various values of r/. We see from these 
results that 

]Wxl ~ ]Vrl ~ (1 - ~/)lO~a[ Uo ~ Uo 
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which is consistent with our prior assumption, (22). 
Let 

ffl  = - (1 - 17)Pa(O~a)SC~tazp, 

where 

c~2p = {17(1 + 17)(1 + 3172)(172 + 3)}/((1 + qZ)(3 + 2172 + 3174)}. 

Values of ~2p are given in Table 1. The solution of (23) to (26) reveals that 

(47) 

(48) 

Pl = f(Z) + pj + (contributions from neglected terms), (49) 

where f(Z) is any function of Z. In fact, f(Z) will be determined from the problem for 172. 
We now turn to the alternative formulation as given by (35), (36) and (37). The solution 

of  these in the present special case is 

_ pa 3 174 ( X z y2 )2 
~* = (O;a) 1 

2pv (3 + 217 z + 3174) a z b 2 

2pv(O~a) (1 + q2)2 
Pa (3 + 2172 + 3q 4) V~ (50) 

Clearly, ~* is a function of Vo and so 

(51) 
\ X , Y }  

Of course, equations (44) and (45) together with (35), (29) and (30) can be shown to give 
the result (50). 

(i) Migration of fluid particles across the pipe 
In cartesian coordinates, ~he particle paths (i.e. stream lines) are given by 

dx dy dz 

v~ v, Vo+~',' 

where V = Vxl + V r) + Vz/~. 
We change this into our (X, Y, z) reference system and obtain 

dX dY dz 
= ( 5 2 )  

Vx + Yo;(Vo + ~7) vy - xo;(Vo + T7) (Vo + ~) 

We use (22), (29), (30) and the fact that to a first approximation Vx ~- [7x, Vr ~- Vr, to 
deduce that, to a first approximation, the s~reamlines satisfy 

dX dY dz 
- - ( 5 3 )  

v~ vr Vo 

Eq. (53) immediately yields the result (50), i.e. fluid particles move along Surfaces which 
are geometrically similar to the boundary shape (and which are the equipotentials for 
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Steady, laminar flow through twisted pipes 39 

Vo(X, Y)). It is of interest to find out how a fluid element changes position relative to the 
local cross-section of the pipe. Consider a particle which flows along 

b 2 X  2 "4- aZY 2 = a z, (a z < a2b2). (54) 

We introduce the eccentric angle ~ by 

X = (a/b) cos ~; Y = (a/a) sin ?. (55) 

It can be deduced from (53) that for a fluid particle 

= -a~0~ + (constant) ~ - -  
d~ 

= -afl~,  (56) 
dz 

where 

47(1 + q2) 
as = (3 + 2/,/2 -t- 3t/4) " (57) 

Values of a s are given in Table 1. 
For a circular pipe, q = 1. In this case, equation (57) gives a~ = 1, i,e. ;; = - 0 r  + 

+ (constant). This indicates that the fluid element is staying fixed relative to the cartesian 
axes Oxy, a result which is obviously correct (for a circular pipe, Vx = 0 -- Vy -= V~). 

For the other cases 0 < t / <  1 and equation (57) shows that 0 < as < 1. From this fact 
and equation (56), we deduce that fluid particles migrate relative to the (local) cross-section, 
along an elliptical curve geometrically similar to that of the boundary shape and in the di- 
rection opposite to the local twisting of the pipe. In real terms, the fluid particle migrates 
in the direction of local twist but always lags behind (except where 0, = 0). 

(ii) The problem for f'~ 
Equation (5), together with appropriate boundary conditions will determine 17~. We start 
by assuming that V 2, rVz will be important in the determination of Vz. If  we then omit from 
equation (5) those terms which are definitely negligible (whatever the result for 9~), we 
obtain 

1 OVo 1 OV o ( OVo OVo~ 
7 vxVy- + - vy-f f-  + l-O;Vo \ Y - - -  x 

v v OX OY ] 

__  8P1~ 1 (O'Y ~P* - O:X~y  + 
+ pv k ax az ] 

= v~,yT~ + (0")2{r 2 e2v~ x ~ ~176 0Vo _ x 0Vo~ 
OX z + OY 2 Y-dY OX J 

f __a Vo _ O Vo "~ 
+ o; ~Y x (58) 

t ~ x  ~Y j" 

Now the last two terms on the R.H.S. of (58) are of order (O')ZUo(1 - 7). 
The last term on the left hand side of (58) is O((1 - n)Uo(O'~) 2 + (1/pv) [f'(Z)]). [f'(Z)[ 

will be of order consistent with the rest of the terms in the equation, i.e. we can ignore it 
during the present discussion of order of magnitude. 
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40 L. Todd 

At first sight, it would seem that replacing Vx, Vr in (58) by Vx, Vr would give a first 
approximation to the sum of the first three terms on the L.H.S. and that this would be of  
order (1 - q)RO;Uo a- t .  But 

~x - g u  + r-g-f- + O'yo r a--y - x aY - v ~ - g s  + v~ - ~ - /  

_ j (  Vo,~* ) _ 
\ ~ , y  ] O, (59) 

as is shown by equation (51). This seemingly convenient cancellation does, in fact, con- 
siderably complicate the analysis. If the Jacobian of equation (59) had been of  the same 
order of magnitude as the separate terms, we would have deduced that 

{Vz/(1 - r/)U0} was O{R(O;a), (0',a)Z}. (60) 

The above cancellation reduces the R(O'~a) to something smaller. We must calculate that 
part of  this smaller quantity which, in magnitude, could be bigger than, or comparable 
with, (0'~a) 2. 

A closer examination of the full problem enables us to deduce that 

V x = fx{1 + O(R(a03, (a02)2)} + O((aO;)V~), 
(61) 

Vy = Vy{1 + O(R(aO~), (a0'02)} + O((aO~)Vz). 

The term involving R(aO'O will generate a contribution of order (1 - q)Uo(RaO'O z to Vz 
and to (pv)-~f '(Z).  This contribution may be significant or even dominant. The other 
terms in (61) yield contributions which are relatively insignificant. Thus, in order to ob- 
tain fz and f ' ( Z )  to a first approximation, valid for all possible values of R, we must ob- 
tain the terms in R(aO'~) as set out in equation (61). 

Let ~x and ~r be the desired corrections to ~x and fir. (This means ~x and ~r are of 

order ~'xR(aO',)). The problem for 17 x and IY r reduces to the following 

- - -  + = 0, (62) 
OX OY 

- -  Vx-=zz- + - -  ~'v--~7_~ + - -  Vo--Tw- + --O'~V o Y X - ~ 
v v v ~ ~g 

1 ~ ~ 
+ - -  ( p l  - ~ )  = v~: , r~ 'x ,  

pv OX 

7v*-bY ~r+ ~-~r~ Tr- +-Vo-~- 
1 8 ~ 

+ --- -- (p~ - p~) = v~, ~r. 
pv ~Y 

The boundary conditions are, of  course, 

+ O;Vo r e x  x - g - f - + ~ x  

+(5 

(63) 

(64) 

(65) 
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The solution to the above (essentially) two-dimensional problem is of the form 

Vx = {Polynomial in (s q])}R(O,a)2(1 _ rl)U ~ 

+ {Polynomial in (~,  ~/)}RO'~a2(1 - q)U o (66) 

with ~r given by a similar expression. We also deduce that 

Pl - Pl = f (Z)  + 5(2{Polynomial in (5(, Y])}R(O'~a)2(1 - ~l)Pa 

+ s in (W, Yt)}RO'~a2(1 - q)Pa 

+ smaller contributions due to neglected terms. (67) 

The coefficients* in the polynomials are complicated rational functions of r/; bounded over 
the range of  interest 0 < r/ < 1. f (Z)  is an unknown function of z - Z which will be de- 
termined from the problem for V~. Equation (67) is consistent with the earlier equation (49). 
f (Z)  differs from f (Z )  in that it includes a term of order R2(aO'OPa(1 - rl) which was pre- 
viously among the neglected terms. 

We are now ready to solve for V~ and f (Z) .  Now the second and third term (as well as 
the last term) on the R.H.S. of (67) do not provide significant contributions to V~ and f(Z) 
and thus we solve 

_ 

7Vx-bY -+ ~ T r  -+ pv\ ax Tr -+  az/+ o-7~- 

= v~,yr7 z + (0,02 {~.2 a2VOax ~ + x~ ~Vo 

+o;  yaVo  x 
o~2- - ar  j 

The boundary conditions are 

17z = 0 on a2X 2 + b2y 2 = aEb 2 

and 

OVo X OVo 
aY - - ~ -  - Y a~- - ax  j 

I IA  ~ z d A  = O, 

where A is any cross-section of the pipe, i.e. A is the area 

z = constant; b2X 2 + a2Y 2 < a2b z. 

The boundary condition (70) comes from the fact that 

f f a (Vo  + V~)dA = Q - flow rate, 

and that by definition 

f f A V o d A = Q  �9 

(68) 

(69) 

(70) 

* These coefficients were calculated numerically for various values of ~7 but they are not presented here as, 
in themselves, they are not of primary interest. 
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The solution set is once again explicitly obtained, as it basically involves only polynomials 
in s and ~ .  The solution set is 

= (1 - rl)Vo{(O;a)2(%0 y'2 + %2~ 2 + %0) + 0'~a2y'~(ell - I/(1 + q)(1 + t/E) -2} 

+ (1 - ~l)Uo(RO'~a)2{eoo + e20(5~ e2 --  /,/2@/2) _~ e4o.~.4 + e22~,,20-ff2 .~ eo4ffff,~ 

+ e60 ~e6 + e42~'47~ 2 + e24~e2~ 4 + eo6~ 6 + e8o.~ s 

+ e62~'6~/2 + e44~4~ + ez6,~e2~/6 + eo8~ 8 + elo f l ~  

+ e82~f'8~ff 2 + e64~6~] 4 + e46~4~  6 + e 2 s ~ 2 ~  8 + eola/~ 10} 

+ (1 - tl)UoR2(O'~a2){ell~ / + eat~r3~ + ela~qr a + esv~s~  

+ e33~c30-/ot '3 + el5~f'a'j 5 + e71~c7@ " + e53~5@ '3 + e35,.~c307ff 5 

+ el7~q~'crff 7 + e91~,'9@ ' + e73~7~  3 + e55~fsaff 5 + e37~.~3ad/'7 

+ e19~ealff 9 } 

+ (1 - tl)Vo(RO',a)2c~ap (71) 

and 

4 
dZ P(1 - tl){(1 - r/)~lp(0;a) 2 + cz3p(RO~a ) } (72) 

where the coefficients e2o, etc. are rational functions of ~/. The coefficients are much too 
complicated for it to be a worthwhile exercise obtaining the algebraic formula for each of 
them. Instead, the author used a computer to derive them numerically for various values of 
r/. Even this involved considerable work, viz. 

(i) The coefficients involved in ~x and ~r (as per equation (66)) were found numerically 
(for various values of t/) by solving a set of seven simultaneous linear equations in seven 
unknowns and a similar set of eight equations in eight unknowns. 

(ii) Based on the results of (i) above, it was then possible to obtain numerically (for the 
same set of values of r/), the coefficients involved in (71) and (72). This required solving a 
set of twenty simultaneous linear equations in twenty unknowns, a similar set of fifteen 
equations in fifteen unknowns, and finally calculating the coefficients of df/dZ which can 
be expressed in terms of the other coefficients using the boundary condition (70). The 
coefficients Cqp, e2p, ~2o, %2, %0 and ~1~ are given in Table 1. The coefficients eoo, e2o, . . . ,  
e2s and eol are given in Table 3. The coefficients e 11, eal . . . .  , e37 and el9 are given in Table 2. 

Equations (7), (20), (67) and (72) allow us to deduce that 

0p 
_ dff-O,,a2~ , 2 -- q )%p(RO,a)  } - P { l + ( l  q)2~lp(0;a)2+(1 n)~2p~r t ,  ) + ( 1 -  

Oz 

+ (terms of smaller order). (73) 

Equation (73) indicates the increase in pressure gradient required in order to maintain the 
same flow rate as for Poiseuille flow, i.e. the non-twisted case. The pressure gradient for 
Poiseuille flow is, of course, - P. 
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The coefficient %p was found to be zero for all values of q. More precisely, we worked in 
double precision to the limit of accuracy of the computer. In so doing, we obtained results 
for c~ap of order 10-17, 10-1 s (see Table 1). This can (could) be accounted for by unavoid- 
able round-off error. Considerable cross-checking and care went into the calculation of c%p, 
this work spanning a period of 12 months. The result for c%p is of considerable importance 
because it means that the first (bracketed) term on the R.H.S. of equation (73) does not give 
a valid first approximation, for all values of R, to the required increase in pressure gradient 
due to the twist. A careful reexamination of the full problem revealed that with ~ap -- 0, 

0p 
- P{1 + ( 1 -  q)2~lp(O'~a)Z + (1 - q)~2p~r~/(O"~a 2) 

t?z 

+ (1 - t/) (a term of order (RO'~a)3)} + terms of smaller order. (74) 

However, the work involved in an explicit derivation of (74) would be prohibitive (and is 
hereby bequeathed to someone else). In any case, as was pointed out in Section 4, for 
shapes other than the ellipse, one can expect a (non-zero) contribution of order (RO'~a) to 
the bracketed term in (74). 

We finish by pointing out that equation (71) does give a first approximation to V~ for all 
possible values of R, (O'~a) and "" 2 v~a . In Figures 2, 3 and 4, we give some details of 9z for 
various possible cases. These were obtained by computer calculations. We point out that 
for R >> 1, IV~l may be typically large compared to IVxl and lVr[. 

Calculations were also made for R ~ 1, 0'~ -- constant and t / =  0.05(.05).95. These re- 
vealed that the corresponding 6V~ is negative everywhere for r/less than about .45 and that 

(Y]a) 

R ~ o o  

Contours of 
~ 10 5 (6gz/Uo(ROl, a) 2) 

�9 4 _ 

.~, 0 .4 
- 1 . 9  

�9 3 ~ "  . 

/ 7 /  \ \ 
/ i i  o i,,vo , 

0 .i . i  .3 .4 "5 .6 -7 .'8 .~) 1"0 

Figure  2. The  relative change  in axial velocity, V. ~, due to a cons t an t  twist (i.e. 0' s = constant )  when 
R = c~, B = .5 (OVz is the  excess o f  Vz over  tha t  which would  be occas ioned in the  no-twist  case by the  
same  pressure  gradient ,  i.e. ~pIOz - P { 1  + (1 2 , 2 = - ~7) ~lp(O~a) }. Here,  Vz is taken  to be Uo + Vz.) The 
results  for  ~/ = .5, (R/150) z ~ 1 are similar.  
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(Y/a) 

.5 

~ ~ 

"3 

�9 2 ~ 

"1' 

0 

(r/a) 

'5 
"4 '  

.3 

.2 

.1 

0 

(Y[a). 

R = 150 
Contours of 
lo (6 Vd~Zo(O',a) ~) 

~ 1 . 3 2 _  

_ 4 . 6 ; "  ~ . . - ~ - - - . ~ . -  .13 
�9 - "  ' " "  0 - ' 7 " x /  ! . " , 

Neg. , . . . ~  "., ,~, 

. ,' Positive~ ~ ' , \  

�9 1 "2 "3 "4 '5 "6 "7 .8 "91'0 

R = 100 

Contours of 
lo (6 vz/~o(Ol, a) ~) 

' ~ ~  

�9 1 "2 "3 "4 "5 .6 "7 "8 .9 1.0 

R =  70 
Contours of 

�9 5 10 (6Vz/Uo(Ol, a) 2) 

"4"7-'5"3' -" ~ "  < -92_ , 2 . ,  ~ 

'2' ,,~, " - f . ' :  z z.. 
- 1.19 ,' / "  ,~,, " . ' . \  

�9 1 : / - v i i  
�9 . \ t . . . .  J ~ ' t  

0 "2 -4 "6 "8 1"0 

(Y/a), 

"5. 
~ 

"3 
.2 

.1 

0 

R = 50 

Contours of 

.2 .4 .6 .8 1-0 

, (x/a)  

(x/a) 

(X/a) 

(x/a) 
b 

Figure 3. The  relative change  in axial 

velocity, V" k, due to a cons tant  twist 

when ~7 = .5 (see capt ion for  figure 2). 

(a) R = 150, (b) R = 100, (c) R ---- 70, 

(d) • = 50. 
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(Y/a), 
(R/50) 2 1 

Contours of  
�9 5 -------- 10 (6 Vz/Uo(Ol, a) 2) 

P o s . . ~  0 - . 2 3  �9 . - . * * *  

�9 4 j . . - - -  - 

�9 2 / / - 1 0 2  

/ / Negative ~ !  

0 -'1 .2 .'3 .4 "5 .6 .;/ . 8  .9 1.0 "- (X/a) 

Figure 4. The relative change in axial velocity, V. k, due to a constant twist when R ~ 1, V = .5. The 
results for ~/ = .5, (R/50) 2 ,~ 1 are similar (see caption for figure 2). 

as q is increased from .5, the area of positive 5V~ (see top left-hand corner of Figure 4) in- 
creases in size until at q = .95, it occupies a sizable part of the cross-section. Calculations 
were made for R >> 1, 0', = constant, and r/ = 0.05(.05).95. These were all qualitatively 
the same as that illustrated in Figure 2 (the case t / =  .5). Computations were carried out 
for a special case of  varying twist, 

0, = e sin (kz) (75) 

at z = 0, 7z/(4k), ~/(2k), etc. In this case, the profiles of  6V~ are asymmetric. The complex 
nature of the results made it clear that the reader who wishes specific detail for any given 
O~(z) should construct the corresponding 6V, for himself, using equation (71) and Tables 1, 
2 and 3. 

6. Conclusions 

The case of a (twisted) pipe of elliptical cross-section, though analytically tractable with the 
aid of a computer, is not completely representative of  the general case. Also, most other 
special cases will require numerical solution of the governing partial differential equations 
and boundary conditions. For further conclusions, the reader is referred back to the com- 
ments in Section 4 (beginning with the first new paragraph after equation (37)). 

It is a pleasure to record my gratitude to the National Research Council of Canada 
whose grant to me was of great benefit to the pursuit of  my research. Mr. D. Wright was a 
very efficient programming assistant. 
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